1. PRODUCT IDENTIFICATION

CHEMICAL NAME; CLASS:  LIQUID ARGON
SYNONYMS: Cryogenic Liquid Argon; LAR; Argon, Refrigerated Liquid
CHEMICAL FAMILY NAME: Inert Gas
FORMULA: Ar

Document Number: 10017
Inert gas shield for all welding and cutting, and for general analytical/synthetic chemical uses.

MANUFACTURED/SUPPLIED FOR:
ADDRESS: 9101-LBJ-FREEWAY, SUITE-800
DALLAS, TX-75243
EMERGENCY PHONE: CHEMTREC: 1-800-424-9300
BUSINESS PHONE: General MSDS Information 1-972/301-5200
Fax on Demand: 1-800/231-1366

2. COMPOSITION and INFORMATION ON INGREDIENTS

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>CAS #</th>
<th>mole %</th>
<th>EXPOSURE LIMITS IN AIR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ACGIH-TLV</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TWA (ppm)</td>
</tr>
<tr>
<td>Argon</td>
<td>7440-37-1</td>
<td>99.99%</td>
<td></td>
</tr>
<tr>
<td>Maximum Impurities</td>
<td>&lt;0.01%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are no specific exposure limits for Argon. Argon is a simple asphyxiating gas. Oxygen levels should be maintained above 19.5%.

None of the trace impurities in Liquid Argon contribute significantly to the hazards associated with the product. All hazard information pertinent to Liquid Argon has been provided in this Material Safety Data Sheet, per the requirements of the OSHA Hazard Communication Standard (29 CFR 1910.1200) and State equivalents standards.

NE = Not Established.  See Section 16 for Definitions of Terms Used.

NOTE: ALL WHMIS required information is included in appropriate sections based on the ANSI Z400.1-1998 format. This product has been classified in accordance with the hazard criteria of the CPR and the MSDS contains all the information required by the CPR.
3. HAZARD IDENTIFICATION

**EMERGENCY OVERVIEW:** Liquid Argon is a colorless, odorless, cryogenic liquid. The main health hazard associated with releases of this gas is asphyxiation, by displacement of oxygen. The cryogenic liquid will rapidly boil to the gas at standard temperatures and pressures. The liquefied gas can cause freezing of tissue, or cryogenic burns, similar to frostbite to eyes or skin upon contact.

**SYMPTOMS OF OVER-EXPOSURE BY ROUTE OF EXPOSURE:** The most significant routes of over-exposure for this gas are by inhalation, and contact with the cryogenic liquid.

**INHALATION:** High concentrations of this gas can cause an oxygen-deficient environment. Individuals breathing such an atmosphere may experience symptoms which include headaches, ringing in ears, dizziness, drowsiness, unconsciousness, nausea, vomiting, and depression of all the senses.

Under some circumstances of over-exposure, death may occur, due to the displacement of oxygen. The following effects associated with various levels of oxygen are as follows:

<table>
<thead>
<tr>
<th>CONCENTRATION</th>
<th>SYMPTOM OF EXPOSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-16% Oxygen:</td>
<td>Breathing and pulse rate increased, muscular coordination slightly disturbed.</td>
</tr>
<tr>
<td>10-14% Oxygen:</td>
<td>Emotional upset, abnormal fatigue, disturbed respiration.</td>
</tr>
<tr>
<td>6-10% Oxygen:</td>
<td>Nausea and vomiting, collapse or loss of consciousness.</td>
</tr>
<tr>
<td>Below 6%:</td>
<td>Convulsive movements, possible respiratory collapse, and death.</td>
</tr>
</tbody>
</table>

**CONTACT WITH SKIN or EYES:** Contact of the liquid with the skin can lead to severe cryogenic burns or dermatitis (red, cracked, irritated skin), depending upon concentration and duration of exposure. Contact of the liquid with the eyes can cause pain, redness, severe cryogenic burns, and prolonged exposure could cause blindness. Contact with the undiluted liquid will cause frostbite, ulceration of the skin (which may be delayed in appearance for several hours), blistering, and pain. Contact with rapidly expanding gas poses a frostbite hazard.

**OTHER POTENTIAL HEALTH EFFECTS:** Contact with cryogenic liquid or rapidly expanding gases (which are released under high pressure) may cause frostbite. Symptoms of frostbite include change in skin color to white or grayish-yellow. The pain after contact with liquid can quickly subside.

**HEALTH EFFECTS OR RISKS FROM EXPOSURE: An Explanation in Lay Terms.** Over-exposure to Liquid Argon may cause the following health effects:

**ACUTE:** The most significant hazard associated with this gas is inhalation of oxygen-deficient atmospheres. Symptoms of oxygen deficiency include respiratory difficulty, ringing in ears, headaches, shortness of breath, wheezing, headache, dizziness, indigestion, nausea, and, at high concentrations, unconsciousness or death may occur. The skin of a victim of over-exposure may have a blue color. Contact with cryogenic liquid or rapidly expanding gases (which are released under high pressure) may cause frostbite. Symptoms of frostbite include change in skin color to white or grayish-yellow. The pain after contact with liquid can quickly subside.

**CHRONIC:** There are currently no known adverse health effects associated with chronic exposure to Liquid Argon.

**TARGET ORGANS:** ACUTE: Respiratory system. CHRONIC: None known.

**4 FIRST-AID MEASURES**

**RESCUERS SHOULD NOT ATTEMPT TO RETRIEVE VICTIMS OF EXPOSURE TO LIQUID ARGON WITHOUT ADEQUATE PERSONAL PROTECTIVE EQUIPMENT.** At a minimum, Self-Contained Breathing Apparatus should be worn.

Remove victim(s) to fresh air, as quickly as possible. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Only trained personnel should administer supplemental oxygen. Victim(s) must be taken for medical attention. Rescuers should be taken for medical attention, if necessary. Take copy of label and MSDS to physician or other health professional with victim(s).
4 FIRST-AID MEASURES (Continued)

SKIN EXPOSURE: Remove any clothing that may restrict circulation to any frozen area. Do not rub frozen parts as tissue damage may occur. As soon as practicable, place any affected area in warm water bath which has a temperature that does not exceed 105°F (40°C). NEVER USE HOT WATER. NEVER USE DRY HEAT. If area of frostbite is extensive, and if possible, remove clothing while showering with warm water. If warm water is not available, or is impractical to use, wrap the affected parts gently in blankets. Alternatively, if the fingers or hands are frostbitten, place the affected area of the body in the armpit. Encourage victim to gently exercise the affected part while being warmed. Seek immediate medical attention.

Frozen tissue is painless and appears waxy, with a possible yellow color. Frozen tissue will become swollen, painful and prone to infection when thawed. If the frozen part of the body has been thawed by the time medical attention has been obtained, cover the area with a dry sterile dressing and a large bulky protective covering.

EYE EXPOSURE: If liquid is splashed into eyes, or if irritation of the eye develops after exposure to liquid or gas, open victim's eyes while under gentle running water. Use sufficient force to open eyelids. Have victim "roll" eyes. Minimum flushing is for 15 minutes. Seek medical assistance immediately, preferably an ophthalmologist.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE: Pre-existing respiratory conditions may be aggravated by over-exposure to Liquid Argon.

RECOMMENDATIONS TO PHYSICIANS: Treat symptoms and reduce over-exposure.

5. FIRE-FIGHTING MEASURES

FLASH POINT: Not applicable.
AUTOIGNITION TEMPERATURE: Not applicable.
FLAMMABLE LIMITS (in air by volume, %):
  - Lower (LEL): Not applicable.
  - Upper (UEL): Not applicable.

FIRE EXTINGUISHING MATERIALS: Non-flammable, inert gas. Use extinguishing media appropriate for surrounding fire.
RESPONSE TO FIRE INVOLVING CRYOGEN: Cryogenic liquids can be particularly dangerous during fires because of their potential to rapidly freeze water. Careless use of water may cause heavy icing. Furthermore, the relatively warm water greatly increases the evaporation rate of Argon. If large concentrations of Argon gas are present, the water vapor in the surrounding air will condense, creating a dense fog that may make it difficult to find fire exits or equipment. Liquid Argon, when exposed to the atmosphere, will produce a cloud of ice/fog in the air upon its release.
UNUSUAL FIRE AND EXPLOSION HAZARDS: Liquid Argon does not burn; however, containers, when involved in fire, may rupture or burst in the heat of the fire. Liquid Argon when accidentally released will vaporize rapidly, forming an oxygen deficient vapor cloud. Evacuate this vapor cloud area. Visibility may be obscured in its vapor cloud. Pressure in a container can build-up due to heat and it may rupture if pressure relief devices should fail to function. Contact with cold liquid or gaseous Argon may cause frostbite.
  - Explosion Sensitivity to Static Discharge: Not Sensitive.

SPECIAL FIRE-FIGHTING PROCEDURES: Structural fire-fighters must wear Self-Contained Breathing Apparatus and full protective equipment. If possible, remove Argon cryogenic containers from fire area or cool with water. Do not direct water spray at the container vent. Evacuate area. Other information for pre-planning can be found in the North American Emergency Response Guidebook.

6. ACCIDENTAL RELEASE MEASURES

RESPONSE TO CRYOGENIC RELEASE: Clear the affected area and allow the liquid to evaporate and the gas to dissipate. After the gas is formed, follow the instructions provided below. Alternatively, to increase the rate of vaporization, spray large amounts of water on to the leak from an upwind position. If the area must be entered by emergency personnel, SCBA, leather or insulated gloves, and safety shoes must be worn. Personnel responding to a release must avoid all contact with the liquid.

Minimum Personal Protective Equipment should be Level B: leather or thermally insulated gloves and Self-Contained Breathing Apparatus. Locate and seal the source of the leaking gas. Monitor the surrounding area for oxygen level. The atmosphere must have at least 19.5 percent oxygen before personnel can be allowed in the area without Self-Contained Breathing Apparatus.

If leaking incidentally from the container or valve, contact your supplier.
7. HANDLING and USE

WORK PRACTICES AND HYGIENE PRACTICES: Be aware of any signs of dizziness or fatigue; exposures to fatal concentrations of Liquid Argon could occur without any significant warning symptoms, due to oxygen deficiency.

STORAGE AND HANDLING PRACTICES: Cryogenic containers should be stored in dry, well-ventilated areas away from sources of heat, ignition and direct sunlight. Keep storage area clear of materials which can burn. Store containers away from heavily trafficked areas and emergency exits. Store away from process and production areas, away from elevators, building and room exits or main aisles leading to exits. Protect containers against physical damage.

Containers should be stored upright and be firmly secured to prevent falling or being knocked-over. Containers can be stored in the open, but in such cases, should be protected against extremes of weather and from the dampness of the ground to prevent rusting. Cryogenic containers are equipped with pressure relief devices to control internal pressure. Under normal conditions, these containers will periodically vent small amounts of product. Some metals such as carbon steel may become brittle at low temperatures and will easily fracture. Prevent entrapment of liquid in closed systems or piping without pressure relief devices. Use a check valve or other protective device in the discharge line to prevent hazardous backflow. Never tamper with pressure relief valves and containers.

Keep the smallest amount on-site as is necessary. Full and empty containers should be segregated. Use a first-in, first-out inventory systems to prevent full containers from being stored for long periods of time.

SPECIAL PRECAUTIONS FOR HANDLING CRYOGENIC CONTAINERS: Cryogenic liquids can present significant safety hazards. Never allow any unprotected part of the body to touch uninsulated pipes or vessels which contain cryogenic fluids. The extremely cold metal of the container will cause the flesh to stick fast and tear when one attempts to withdraw from it. The following rules are applicable to work situations in which cryogenic containers are being used.

Before Use: Move containers a suitable hand-truck. Do not drag, slide or roll containers. Do not drop containers or permit them to strike each other. Secure containers firmly.

During Use: Use designated CGA fittings and other support equipment. Do not use adapters. Do not heat container by any means to increase the discharge rate of the product from the container. Do not use oils or grease on valve fittings or equipment. Leak-check system with leak detection solution. Immediately contact the supplier if there are any difficulties associated with operating container valve.

After Use: Close main container valve. Mark empty container "EMPTY".

NOTE: Use only DOT or ASME code containers designed for gas storage. Close valve after each use and when empty. Containers must not be recharged except by or with the consent of owner. For welding and brazing operations, refer to ANSI Z-49.1 "Safety in Welding and Cutting" and OSHA safety regulations for welding, cutting, and brazing (29 CFR 1910.252). Refer to Section 16, Other Information, for additional available literature.

OTHER SPECIAL PRECAUTIONS: Use piping and equipment adequately designed to withstand pressures and temperatures to be encountered. Use a check valve or other protective apparatus in any line or piping from the container to prevent reverse flow. To prevent cryogenic liquids or cold gas from being trapped in piping between valves, the piping shall be equipped with pressure relief devices. Only transfer lines designed for cryogenic liquids shall be used. It is recommended that all vents be piped to the exterior of the building.

STANDARD VALVE CONNECTIONS FOR U.S. AND CANADA: Use the proper CGA connections, DO NOT USE ADAPTERS:

- THREADED: CGA 295
- PIN-INDEXED YOKE: Not Applicable.
- ULTRA HIGH INTEGRITY: Not Applicable.

PROTECTIVE PRACTICES DURING MAINTENANCE OF CONTAMINATED EQUIPMENT: Follow practices indicated in Section 6 (Accidental Release Measures). Make certain application equipment is locked and tagged-out safely. Always use product in areas where adequate ventilation is provided.

8. EXPOSURE CONTROLS - PERSONAL PROTECTION

VENTILATION AND ENGINEERING CONTROLS: Use with adequate ventilation. Local exhaust ventilation is preferred, because it prevents chemical dispersion into the work place by eliminating it at its source. If appropriate, install automatic monitoring equipment to detect the level of oxygen.

RESPIRATORY PROTECTION: Maintain oxygen levels above 19.5% in the workplace. Use supplied air respiratory protection if oxygen levels are below 19.5% or during emergency response to a release of Liquid Argon. If respiratory protection is required, follow the requirements of the Federal OSHA Respiratory Protection Standard (29 CFR 1910.134), or equivalent State standards.

EYE PROTECTION: Full face shield and safety glasses are recommended. If necessary, refer to U.S. OSHA 29 CFR 1910.133 or appropriate Canadian Standards.
8. EXPOSURE CONTROLS - PERSONAL PROTECTION (Continued)

HAND PROTECTION: Wear loose-fitting, thermally insulated or leather gloves. Otherwise, wear glove protection appropriate to the specific operation for which Liquid Argon is used. If necessary, refer to U.S. OSHA 29 CFR 1910.138 and appropriate Standards of Canada.

BODY PROTECTION: Use body protection appropriate for task. Safety shoes are recommended when handling containers, as well as long sleeve shirts and trousers. Safety shoes are recommended when handling cylinders. If a hazard of injury to the feet exists due to falling objects, rolling objects, where objects may pierce the soles of the feet or where employee’s feet may be exposed to electrical hazards, use foot protection, as described in U.S. OSHA 29 CFR 1910.136.

9. PHYSICAL and CHEMICAL PROPERTIES

GAS DENSITY @ 21.1°C (70°F) and 1 atm: 0.103 lbs/cu ft (1.650 kg/m³)
BOILING POINT @ 1 atm: -185.9 °C (-302°F)
FREEZING/MELTING POINT @ 10 psig: -189.2°C (-308.9°F)
SPECIFIC GRAVITY (air = 1) @ 21.1°C (70°F): 1.38
SOLUBILITY IN WATER vol/vol @ 0°C (32°F) and 1 atm: 0.056
EVAPORATION RATE (nBuAc = 1): Not applicable.
EXPANSION RATIO: for liquid to gas @ 21.1°C (70°F): 1 to 841
VAPOR PRESSURE @ 21.1°C (70°F) psig: Not applicable.
MOLECULAR WEIGHT: 39.95
SPECIFIC VOLUME (ft³/lb): 12.1
ODOR THRESHOLD: Not applicable.

APPEARANCE, ODOR AND COLOR: Liquid Argon is a colorless, odorless, cryogenic liquid.

HOW TO DETECT THIS SUBSTANCE (warning properties): There are no unusual warning properties associated with a release of Liquid Argon, except the extreme cold, which may form a vapor cloud.

10. STABILITY and REACTIVITY

STABILITY: Normally stable, inert gas.
DECOMPOSITION PRODUCTS: None.
MATERIALS WITH WHICH SUBSTANCE IS INCOMPATIBLE: None. Liquid Argon is an inert gas.
HAZARDOUS POLYMERIZATION: Will not occur.
CONDITIONS TO AVOID: Avoid exposing cryogenic containers to extremely high temperatures, which could cause the cryogenic containers to rupture or burst.

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA: The following data are for Argon:

Standard animal toxicity values are not available. Male rats were exposed for 6 days to 20% oxygen and 80% Argon at 1 atmosphere ambient pressure. No significant changes in blood cell counts or bone marrow were observed. Other animal studies concern the deficiency of (hypoxia) or the narcotic effects of various pressures of Argon, the effects of increased Argon pressures on the central nervous system and decompression sickness.

Eyes: Argon gas injected into the anterior (front) chamber of the eyes of rabbits caused no injury and was reabsorbed at about the same rate as air.

SUSPECTED CANCER AGENT: Liquid Argon is not found on the following lists: FEDERAL OSHA Z LIST, NTP, CAL/OSHA, IARC, and therefore is not considered to be, nor suspected to be a cancer-causing agent by these agencies.

IRRITANCY OF PRODUCT: Contact with the cryogenic liquid or rapidly expanding gases can cause frostbite and damage to exposed skin and eyes.

SENSITIZATION OF PRODUCT: Liquid Argon is not a sensitizer.

REPRODUCTIVE TOXICITY INFORMATION: Listed below is information concerning the effects of Liquid Argon on the human reproductive system.

Mutagenicity: Argon is not reported to cause mutagenic effects in humans.
Embryotoxicity: Argon is not reported to cause embryotoxic effects in humans.
Teratogenicity: Argon is not reported to cause teratogenic effects in humans.
Reproductive Toxicity: Argon is not reported to cause adverse reproductive effects in humans.

A mutagen is a chemical which causes permanent changes to genetic material (DNA) such that the changes will propagate through generation lines. An embryotoxin is a chemical which causes damage to a developing embryo (i.e. within the first eight weeks of pregnancy in humans), but the damage does not propagate across generational lines. A teratogen is a chemical which causes damage to a developing fetus, but the damage does not propagate across generational lines. A reproductive toxin is any substance which interferes in any way with the reproductive process.

BIOLOGICAL EXPOSURE INDICES (BEIs): Currently, Biological Exposure Indices (BEIs) have not been determined for Argon.
12. ECOLOGICAL INFORMATION

ENVIRONMENTAL STABILITY:  Argon occurs naturally in the atmosphere. The gas will be dissipated rapidly in well-ventilated areas.

EFFECT OF MATERIAL ON PLANTS or ANIMALS:  Any adverse effect on animals would be related to oxygen deficient environments, or the extreme cold of the cryogenic gas. No adverse effect is anticipated to occur to plant-life, except for frost produced in the presence of rapidly expanding gases, or freezing from direct exposure to the cryogenic liquid.

EFFECT OF CHEMICAL ON AQUATIC LIFE:  As an inert gas, this product would have no effect on aquatic life.

13. DISPOSAL CONSIDERATIONS

PREPARING WASTES FOR DISPOSAL:  Waste disposal must be in accordance with appropriate Federal, State, and local regulations. Return cryogenic containers with any residual product to Air Liquide. Do not dispose of locally.

For emergency disposal, secure the cylinder and slowly discharge the gas to the atmosphere in a well-ventilated area or outdoors.

14. TRANSPORTATION INFORMATION

THIS GAS IS HAZARDOUS AS DEFINED BY 49 CFR 172.101 BY THE U.S. DEPARTMENT OF TRANSPORTATION.

PROPER SHIPPING NAME:  Argon, refrigerated liquid
HAZARD CLASS NUMBER and DESCRIPTION:  2.2 (Non-Flammable Gas)
UN IDENTIFICATION NUMBER:  UN 1951
PACKING GROUP:  Not Applicable
DOT LABEL(S) REQUIRED:  Class (Non-Flammable Gas)
NORTH AMERICAN EMERGENCY RESPONSE GUIDEBOOK NUMBER (2000):  120
MARINE POLLUTANT:  Liquid Argon is not classified by the DOT as a Marine Pollutant (as defined by 49 CFR 172.101, Appendix B).

SPECIAL SHIPPING INFORMATION:  Cylinders should be transported in a secure position, in a well-ventilated vehicle. The transportation of compressed gas cylinders in automobiles or in closed-body vehicles present serious safety hazards and should be discouraged.

NOTE:  Shipment of compressed gas cryogenic containers which have not been filled with the owners consent is a violation of Federal law (49 CFR, Part 173.301 (b).

TRANSPORT CANADA TRANSPORTATION OF DANGEROUS GOODS REGULATIONS:  This gas is considered as Dangerous Goods, per regulations of Transport Canada. The use of the above U.S. DOT information from the U.S. 49 CFR regulations is allowed for shipments that originate in the U.S. For shipments via ground vehicle or rail that originate in Canada, the following information is applicable.

PROPER SHIPPING NAME:  Argon, refrigerated liquid
HAZARD CLASS NUMBER and DESCRIPTION:  2.2 (Non-Flammable Gas)
UN IDENTIFICATION NUMBER:  UN 1951
PACKING GROUP:  Not Applicable
HAZARD LABEL(S) REQUIRED:  2.2 (Non-Flammable Gas)
SPECIAL PROVISIONS:  None
EXPLOSIVE LIMIT & LIMITED QUANTITY INDEX:  0.12
ERAP INDEX:  None
PASSENGER CARRYING SHIP INDEX:  None
PASSENGER CARRYING ROAD OR RAIL VEHICLE INDEX:  75
MARINE POLLUTANT:  Argon is not a Marine Pollutant.

15. REGULATORY INFORMATION

ADDITIONAL U.S. REGULATIONS:

U.S. SARA REPORTING REQUIREMENTS:  Liquid Argon is not subject to the reporting requirements of Sections 302, 304 and 313 of Title III of the Superfund Amendments and Reauthorization Act.

U.S. SARA THRESHOLD PLANNING QUANTITY:  There are no specific Threshold Planning Quantities for this gas. The default Federal MSDS submission and inventory requirement filing threshold of 10,000 lb (4,540 kg) may apply, per 40 CFR 370.20.

U.S. TSCA INVENTORY STATUS:  Argon is listed on the TSCA Inventory.

U.S. CERCLA REPORTABLE QUANTITIES (RQ):  Not applicable.
15. REGULATORY INFORMATION (Continued)

ADDITIONAL U.S. REGULATIONS (continued):
OTHER U.S. FEDERAL REGULATIONS:

• Argon does not contain any Class I or Class II ozone depleting chemicals (40 CFR part 82).
• Argon is not subject to the reporting requirements of Section 112(r) of the Clean Air Act.
• Depending on specific operations involving the use of Liquid Argon, the regulations of the Process Safety Management of Highly Hazardous Chemicals may be applicable (29 CFR 1910.119). Under this regulation Liquid Argon is not listed in Appendix A.
• Argon is not listed as a Regulated Substance, per 40 CFR, Part 68, of the Risk Management for Chemical Accidental Release.

U.S. STATE REGULATORY INFORMATION: Liquid Argon is covered under the following specific State regulations:

- **Alaska** - Designated Toxic and Hazardous Substances: Argon.
- **California** - Permissible Exposure Limits for Chemical Contaminants: Argon.
- **Florida** - Substance List: Argon.
- **Illinois** - Toxic Substance List: Argon.
- **Kansas** - Section 302/313 List: No.
- **Massachusetts** - Substance List: Argon.
- **Minnesota** - List of Hazardous Substances: Argon.
- **Missouri** - Employer Information/Toxic Substance List: Argon.
- **New Jersey** - Right to Know Hazardous Substance List: Argon.
- **North Dakota** - List of Hazardous Chemicals, Reportable Quantities: No.
- **Pennsylvania** - Hazardous Substance List: Argon.
- **Texas** - Hazardous Substance List: No.
- **West Virginia** - Hazardous Substance List: No.
- **Wisconsin** - Toxic and Hazardous Substances: No.

**CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65):** Liquid Argon is not on the California Proposition 65 lists.

**ADDITIONAL CANADIAN REGULATIONS:**

**CANADIAN DSL/NDSL INVENTORY STATUS:** Liquid Argon is included in the DSL Inventory.

**CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) PRIORITY SUBSTANCES LISTS:** Liquid Argon is not on the CEPA Priorities Substances Lists.

**WHMIS CLASSIFICATION:** Liquid Argon is categorized as a Controlled Product, Hazard Class A, as per the Controlled Product Regulations.

**OTHER CANADIAN REGULATIONS:** Not applicable.

16. OTHER INFORMATION

**MIXTURES:** When two or more gases or liquefied gases are mixed, their hazardous properties may combine to create additional, unexpected hazards. Obtain and evaluate the safety information for each component before you produce the mixture. Consult an Industrial Hygienist or other trained person when you make your safety evaluation of the end product. Remember, gases and liquids have properties which can cause serious injury or death.

Further information about Argon can be found in the following pamphlets published by: Compressed Gas Association Inc. (CGA), 4221 Walney Road 5th floor, Chantilly, VA 20151-2923. Telephone: (703) 788-2700.

- G-11.1 “Commodity Specification for Argon”
- P-1 “Safe Handling of Compressed Gases in Containers”
- P-9 “Inert Gases—Argon, Nitrogen, and Helium”
- P-12 “Safe Handling of Cryogenic Liquids”
- P-14 “Accident Prevention in Oxygen-Rich, Oxygen-Deficient Atmospheres”
- SB-2 “Oxygen Deficient Atmospheres”
- AV-1 “Safe Handling and Storage of Compressed Gases”
- AV-5 “Safe Handling of Liquefied Nitrogen and Argon”
- “Handbook of Compressed Gases”

**PREPARED BY:** CHEMICAL SAFETY ASSOCIATES, Inc.
PO Box 3519, La Mesa, CA 91944-3519
619/670-0609

Fax on Demand: 1-800/231-1366

AIR LIQUIDE

This Material Safety Data Sheet is offered pursuant to OSHA’s Hazard Communication Standard, 29 CFR, 1910.1200. Other government regulations must be reviewed for applicability to Liquid Argon. To the best of Air Liquide’s knowledge, the information contained herein is reliable and accurate as of this date; however, accuracy, suitability or completeness are not guaranteed and no warranties of any type, either express or implied, are provided. The information contained herein relates only to this specific product. If Liquid Argon is combined with other materials, all component properties must be considered. Data may be changed from time to time. Be sure to consult the latest edition.